Симбиотическая гипотеза (теория) происхождения эукариот. Симбиотическая теория, эндосимбиоз или симбиогенез Идею симбиогенеза впервые выдвинули

Митохондрии - верные спутники эукариот. Согласно теории симбиогенеза, именно обретение митохондрий спровоцировало формирование ядерных организмов. Одним из доказательств этой теории было обнаружение митохондрий или подобных им органелл у всех, даже самых простых, эукариот. Но в мае 2016 года коллектив чешских ученых описал первый в истории ядерный организм, не содержащий даже косвенных признаков митохондрий. Может ли это открытие пошатнуть современные представления о ранней эволюции эукариот?

Митохондрии - двумембранные органеллы, снабжающие энергией клетки практически всех эукариот. Достоверно известно, что они родственны α-протеобактериям и стали частью эукариотических клеток около 1,5 млрд лет назад . О бактериальном происхождение митохондрий свидетельствует наличие двух мембран (внутренней собственной и внешней хозяйской), собственных кольцевой ДНК и трансляционной машины, а также способности независимо делиться. Некоторые даже полагают, что апоптоз - попытка митохондрии убить поглотившего ее эксплуататора.

Тем не менее в научном сообществе до сих пор нет единого мнения относительно роли этого симбиоза в развитии эукариот (рис. 1). Сторонники теории симбиогенеза утверждают, что слияние некой археи с предком митохондрий (бактерией) запустило цепочку событий, приведших к образованию эукариот современного типа. Приверженцы архезойной теории (гипотезы) , наоборот, считают, что «приручить» митохондрию мог только уже оформившийся ядерный организм - архезой .

Благодаря Карлу Вёзе и Джорджу Фоксу, в 70-х годах прошлого века сравнившим гены 16S рРНК множества живых существ, долго обманывавшие микробиологов своим визуальным сходством две формы доядерных организмов (прокариот) развели окончательно и бесповоротно, да еще и на высшем уровне: эубактерий лишили права на «истинность» (-эу), архебактерий - права носить гордое имя бактерий, зато в новой системе живых организмов им отвели по собственному домену (таксону высшего ранга): «Эволюция между молотом и наковальней, или как микробиология спасла эволюцию от поглощения молекулярной биологией » и «Карл Вёзе (1928–2012) » . Так в 1990 году человеку предложили осознать, что все живые существа филогенетически разбиваются на три домена: Бактерии, Археи и Эукариоты, - причем бактерии отличаются от архей даже больше, чем археи от эукариот, а недавно вообще чуть ли не усомнились в целесообразности разделения последних: «Нашли предков всех эукариот » . Однако предложение почти тридцатилетней давности до сих пор не нашло понимания у многих авторов отечественных учебников биологии. А что? Вдруг опять эти ученые всё поменяют, а им переписывать каждые -цать лет учебники что-ли? - Ред.

В 1928 году знаменитый биолог рубежа XIX-XX веков Эдмунд Вилсон высказался о гипотезе бактериального происхождения митохондрий так: «Подобные идеи чересчур фантастичны, чтобы их можно было обсуждать в приличном биологическом обществе» . Сегодня же подобное отношение сформировалось к архезойной теории, а ключевая роль митохондрий в ранней эволюции эукариот общепризнанна. Открытие первого истинно безмитохондриального простейшего заставляет еще раз задуматься о сильных и слабых сторонах каждой из теорий.

Теория симбиогенеза

Одно из преимуществ симбиогенетической теории по сравнению с архезойной в том, что она объясняет возникновение ядра и интронную структуру генома. У прокариот широко распространен горизонтальный перенос генов (ГПГ), за счет которого популяции могут быстро обмениваться частями генофонда . ГПГ способствует незащищенности генома - ведь поступающая ДНК в этом случае ничем не отделена от содержимого хозяйской клетки.

Вполне вероятные попытки клетки-хозяина разрушить пока еще не одомашненного симбионта приводили к высвобождению в цитоплазму симбиотической ДНК. Эта ДНК, будучи в непосредственной близости от хозяйского генома, могла легко в него встраиваться . Из-за ГПГ даже в эукариотах, утративших митохондрии, находят изначально митохондриальные гены.

Такое слияние геномов могло, во-первых, способствовать развитию взаимозависимости симбионта и хозяина. Во-вторых, обильный ГПГ мог переносить не только гены, обеспечившие переплетение метаболизма двух организмов, но и эгоистичные ретроэлементы . Вторжение интронов II группы, вырвавшихся из α-протеобактерий, привело к разрыхлению исходно очень плотного генома хозяина: до 80% хозяйской ДНК теперь были интронами , . В такой сложной ситуации клетка-хозяин развила несколько линий защиты своего генома от шквала интронов: возникли система внутренних мембран и ядро, убиквитиновая система деградации поврежденных белков, нонсенс-опосредованный распад РНК и прочие характерные особенности эукариот (рис. 3).

Рисунок 3. Формирование основных черт эукариот можно объяснить последовавшим за митохондриальным симбиозом вторжением интронов II группы в геном клетки-хозяина.

Еще одно мощное доказательство симбиогенеза - энергетические потребности эукариот. Хотя энергопотребление про- и эукариот в пересчете на грамм веса примерно одинаково, ядерные клетки гораздо крупнее безъядерных, из-за чего они потребляют примерно в 5000 раз больше энергии (2300 пВт/кл против 0,5 пВт/кл). При пересчете энергопотребления на средний ген одноклеточного организма оказывается, что эукариотический ген потребляет в 1000 раз больше энергии . Без митохондриальной энергетики было бы невозможно не только создать сложные, большие и активно передвигающиеся организмы, но даже обеспечить функционирование типичных для эукариот клеточных структур.

У гигантских бактерий масштабирование прокариотической энергетики за счет массовой полиплоидизации (как в случае Epulopiscium , дорастающей до 0,6 мм и содержащей 200 000 копий генома размером 3,8 млн п.н.) не приводит к повышению выхода энергии на ген, и клетка остается типично бактериальной . - Авт.

Еще один важный факт, подкрепляющий симбиогенетический сценарий - существование внутриклеточных симбионтов бактерий. Случаи эндосимбиоза у бактерий крайне редки в природе, но всё же они есть и демонстрируют, как мог зарождаться эукариотический домен жизни .

Архезойная теория

Архезои - предполагаемые безмитохондриальные, но ядерные предки современных эукариот. Согласно архезойному сценарию митохондрии были одомашнены только на поздних стадиях эволюции эукариот и не оказали на этот процесс значительного влияния.

Одно из основных положений симбиогенеза - гипотеза исходной простоты. О жизни во времена протерозоя известно крайне мало, поэтому о ее устройстве существует множество часто взаимоисключающих предположений. Если по первой гипотезе считается, что от прокариот с очень компактными геномами произошли более сложные эукариоты, то в архезойном сценарии изначально существовали клетки с запутанными и громоздкими геномами, от которых путем редукции произошли более простые прокариоты. Эукариоты же лишь сохранили первичную сложность.

Эволюция геномов и правда далеко не всегда движется от простого к сложному. И среди эукариот есть примеры, подтверждающие это.

Тем не менее редукция генома совсем не обязательно сопровождает его компактизацию. Доказательства этого можно найти как у простейших, так и у многоклеточных форм жизни.

Например, свободноживущая инфузория Paramecium tetraurelia содержит 30000 генов, на каждый из которых приходится в среднем 2 т.п.н. Такая компактность достигается за счет сокращения размера интронов до предельных 25 п.н. и уменьшения межгенных расстояний .

Даже у позвоночных могут быть необычно компактные геномы: геном рыбы фугу в восемь раз меньше человеческого в основном за счет низкого содержания повторов (рис. 4) .

Рисунок 4. Рыба фугу имеет необычно компактный для позвоночного геном частично благодаря коротким интронам. Вертикальная ось дана в логарифмическом масштабе.

Рисунок 5. Гипотеза изначальной сложности подразумевает, что прокариотические ветви жизни произошли от более сложных форм за счет редукции. Редукционный вектор развития мог быть задан первыми хищными архезоями, угнетающими прочие организмы.

Приведенные примеры показывают, что простота прокариотических геномов может возникать вторично. Если это так, то LUCA - последний общий предок всех современных организмов - мог обладать геномом эукариотического типа.

Гипотезу исходной сложности также подтверждают так называемые гены-сигнатуры («подписи») - эукариотические гены, не имеющие прокариотических гомологов. Вероятнее всего, эти гены содержались в LUCA, но были утеряны бактериями и археями.

К несчастью архезойной теории, список сигнатур значительно поредел с начала XXI века. Среди множества секвенированных с тех пор геномов были найдены их прокариотические гомологи. Таким образом, с каждым годом становится всё больше белков, чье присутствие у эукариот можно объяснить тем, что их гены были принесены архейным либо бактериальным предком в ходе симбиогенеза.

И в то же время открытие прокариотических гомологов белков клеточного движения (актинов, тубулинов и кинезинов) косвенно подтверждает возможность того, что архезои могли активно передвигаться и даже быть первыми хищниками на Земле, способными к фагоцитозу . Возникновение хищников в автотрофно-сапротрофном сообществе колыбели жизни должно было оказать колоссальное влияние на ход эволюции. В самых захватывающих сценариях одни жертвы архезоя приспосабливаются к быстрому делению и росту, а другие - к нишам, куда архезой не способен проникнуть. В итоге гипотетический архезой повел эволюцию своих современников по редуктивному пути с упором на гибкость метаболизма и скорость деления, в ходе чего сформировались известные нам прокариоты (рис. 5) .

Но несмотря на то, что архезойная теория имеет некоторые сильные стороны или как минимум наносит колкие удары в сторону симбиогенеза, ей не хватает главного - она не объясняет, как и почему сформировалось ядро .

Уникальная находка

В 1980-х существовало множество претендентов на звание современного архезоя, но в последующие годы у всех них нашли митохондриеподобные органеллы (митосомы и пероксисомы) и гены-маркеры митохондриального прошлого: гены сборки Fe-S -белков, митохондриальных транспортеров и шаперонов, синтетазы кардиолипина. К тому же некоторые белки, синтезируемые в цитоплазме, обладают последовательностями импорта в митохондрии, которые могут сохраняться и в отсутствие самих митохондрий.

С каждым новым «закрытием» потенциального архезоя безмитохондриальный сценарий становления эукариот оказывался всё менее вероятным. И вот в мае 2016 года наконец-то появился новый потенциальный архезой, не содержащий даже следов митохондрий.

Речь идет об анаэробной оксимонаде Monocercomonoides sp. PA203, живущей в кишечнике насекомых. Оксимонады лишены митохондрий и не содержат в ядерной ДНК гены митохондриального происхождения. Энергию они получают из гликолиза , идущего в цитоплазме.

Геном Monocercomonoides sp., расшифрованный коллективом чешских ученых, содержит 16629 генов, среди которых нет названных выше маркеров. Поиски митохондриальных гомологов и белков с импортными последовательностями тоже не дали удовлетворительных результатов (рис. 6).

Единственное, что удалось найти - два гена, продукты которых у близкого родственника Monocercomonoides sp. могут содержаться (а могут и не содержаться) в митохондриях, при этом они лишены импортных последовательностей.

Авторы открытия считают, что Monocercomonoides когда-то всё же содержали митохондрии, поскольку у близкородственных родов есть следы митохондрий. Еще остается возможность, что у этих простейших есть пока не обнаруженные митосомы, деградировавшие настолько, что в геноме не осталось каких-либо признаков их присутствия.

Так или иначе, Monocercomonoides sp. - пока уникальный случай истинно безмитохондриального протиста за всю историю биологии. И этот случай доказывает, что эукариоты могут жить не только без митохондрий, но и без их генетического наследства .

В какой последовательности предки эукариот разживались внутриклеточным скарбом и что стало счастливым билетом в эволюционное будущее, можно узнать из статьи «Генеалогия белков свидетельствует о позднем приобретении митохондрий предками эукариот » . - Ред.

Это открытие, конечно, не наносит сокрушительного удара по теории симбиогенеза, но однозначно заставляет задуматься, что есть необходимость и что есть излишество в эукариотах.

Литература

  1. Как появились митохондрии (рассказ, похожий на сказку) ;
  2. Кунин Е.В. Логика случая . М.: Центрполиграф, 2014. - 527 с.;
  3. Эволюция между молотом и наковальней, или Как микробиология спасла эволюцию от поглощения молекулярной биологией ;
  4. Карл Вёзе (1928–2012) ;
  5. Кондратенко Ю. (2015). «Нашли предков всех эукариот ». «Кот Шрёдингера» . 6 ;
  6. van der Giezen M. (2009).

ОТВЕТ:

В большинстве курсов биологии в качестве одного из основных признаков отличия прокариот от эукариот называется наличие у последних двухмембранных органехл (митохондрий и пластид). Эти органеллы, помимо двойной мембраны, имеют еще целый ряд характерных признаков, которые выделяют их среди остальных клеточных мембранных образований. Вопрос их происхождения неразрывно связан с вопросом происхождения эукариот. Ответ на этот вопрос дает теория симбиогенеза.

Итак, согласно этой теории, митохондрии и хлоропласта произошли от симбиотических прокариотических организмов, захваченных протоэукариотом в результате фагоцитоза. Этот протоэукариот, о видимому, представлял собой амебоидный гетеротрофный, анаэробный организм с уже развитыми эукариотическими признаками.

Это становится понятным, если учитывать обстоятельства существования жизни в то время. Первые вероятные остатки эукариот имеют возраст около 1,5 млрд. лет. Содержание кислорода в атмосфере тогда составляло менее 0,1% от современного. В какой-то момент биологической эволюции (когда, точно не известно) возник фотосинтез. Фотосинтетиками были, конечно, прокариоты: цианобактерии и другие группы фототрофных бактерий. Строматолиты - камни из осажденных слоев извести, свидетельства фототрофных бактериальных сообществ, появились более 2 млрд. лет назад (они похожи на современные, которые кое-где образуют цианобактерии). До этого времени атмосфера была бескислородной; с какого-то момента начал накапливаться кислород. Его накопление создало большие проблемы. Он химически активен и, в сущности, ядовит. Пришлось изобретать способы зашиты, в т.ч. биохимические (возможно, один из них - биолюминесценция). Обезвреживать его научились многие прокариоты (хотя значительная часть их осталась строгими анаэробами - для них и сейчас кислород является ядом). Но некоторые пошли дальше - стали использовать этот яд для окисления субстратов с получением энергии. Возник аэробный метаболизм.

Среда! эукариот строгих анаэробов почти нет. Но это - не их заслуга: биохимически отупев на почве хищничества, они украли изобретение прокариот. Сделали они это, закабалив самих прокариот - превратив их в своих внутриклеточных симбионтов.

Еще 25-30 лет назад в нашей стране теория симбиогенеза подвергалась осмеянию и считалась ересью. Но на сегодняшний день она может считаться общепризнанной, хотя и сегодня она сталкивается с рядом затруднений.

2. Теория симбиогенеза: история вопроса

Идея о том, что некоторые органоиды клетки могут быть симбиотическими организмами, возникла в начале века на отечественной почве. Автор ее - хранитель Зоологического кабинета Казанского университета К.С. Мережковский. Этому предшествовало установление Фаминцыным и Барановским симбиотической природы лишайников (1867). То, что лишайники - продукт симбиоза, некоторые ботаники не признавали и через 50 лет! Очень уж непривычно, что такой «знакомый», милый сердцу организм - не «сам по себе», а сращение двух других организмов. Та же ситуация имела место и с идеями Мережковского. Хлоропласгы - не части клетки, а самостоятельные организмы?! Наши клетки напичканы бактериями - митохондриями?! И дышим-то не мы сами, а они?! Эту теорию не признавали тоже 50 лет. Однако потом появились последователи - уже в Америке; приоритет был, как это бывало не раз, утрачен.

Почему теория победила? «Всесильна, потому что верна»?.. На самом деле - потому, что накопились новые данные.

3. Теория симбиогенеза: доказательства.

Точку зрения на митохондрии и хлоропласгы, как на приобретенные клеткой симбиотические бактерии подтверждает ряд особенностей строения и физиологии этих органелл:

1) У них есть все признаки «элементарной клетки»: » полностью замкнутая мембрана;

Генетический материал - ДНК;

Свой аппарат синтеза белка - рибосомы и др.;

Размножаются делением (причем делятся иногда независимо от деления клетки).

2) У них есть признаки сходства с бактериями:

ДНК обычно кольцевая, не связана с гистонами;

Рибосомы прокариотические - 70S--rana и мельче. Нет 5,8S-pPHK, характерной для эукариот;

Рибосомы чувствительны к тем же антибиотикам, что и бактериальные.

4. Теория симбиогенеза: затруднения

У хлоропластов и митохондрий нет клеточной стенки, характерной для предполагаемых предковых групп. Но ее нет или почти нет и у многих современных эндосимбионтов. Видимо, она теряется для облегчения обмена между симбионтом и хозяином. Это как раз затруднение из легких. Кроме того, у водоросли Cyanophora paradoxa найдена

«промежуточные форма» - так называемые цианеллы. Эти органоиды (симбионты?)имеют редуцированную клеточную стенку, почему их и считают цианобактериями. В то же время они имеют размер генома, в 10 раз меньший, чем бактериачьный (что характерно для хлоропластов) и не размножаются вне клетки-хозяина. Примечательно, что Cyanophora - жгутиковая водоросль, а ее цианеллы больше всего напоминают хлоропласты красных водорослей, которые жгутиков всегда лишены.

А вот затруднение из трудных. Многие белки митохондрий и хлоропластов кодируются ядерными генами, синтезируются на рибосомах цитоплазмы и только потом доставляются аж сквозь две мембраны в органеллу! Как так могло получиться? Единственное объяснение в рамках симбиогенеза - часть генов органелл переместилась в ядро. Еше двадцать лет назад казалось, что это -чистый бред. Потом накопились данные о мобильных генетических элементах (одним из этапов знакомства с ними научной общественности в нашей стране стала книга Р.Б. Хе^ина «Непостоянство генома»). Гены меняют места в хромосомах, вирусы встраиваются в геномы бактерий и эукариот и т.п… Процесс перемещения генов в ядро стал казаться более вероятным, но ничем не был доказан. Однако позднее появились и свидетельства того, что такой процесс, видимо, действительно имел место. Помогли белки из нескольких аминокислотных цепей. Один из таких белков митохондрий - протонная АТФ-синтетаза - состоит из 8 субъединиц (пептидных цепей). И вот оказалось, что у дрожжей 4 закодированы в митохондриях, а 4 - в ядре. Это уже само по себе подозрительно! А у человека все 8 цепей закодированы в ядре. Значит, в ходе эволюции эукариот от общих предков дрожжей и человека гены переместились в ядро - значит, это в принципе возможно -ура!

С помощью теории симбиогенеза были предсказаны и/или объяснены многие признаки митохондрий и хлоропластов. Некоторые из предсказаний, которые рассмотрены ниже, сейчас - скорее доказательства: они подтвердились. Прежде всего, теория симбиогенеза объясняет наличие двойной мембраны и ее свойства Приобретение двойной мембраны - результат фагоцитоза; наружная мембрана - бывшая мембрана пищеварительной вакуоли и, таким образом, принадлежит хозяину, а не эндосимбионту. Хотя сейчас эта мембрана воспроизводится вместе с органоидом, как ни странно, по липидному составу она больше похожа на мембрану эндоплазматической сети клетки, чем на внутреннюю мембрану самого органоида.

Объясняет наша теория и различия метаболизма цитоплазмы и органоидов. Анаэроб - протоэукариот приобрел бактерий, которые уже стали аэробными (митохондрии); гетеротроф приобрел фототрофов (хлоропласты). Теория симбиогенеза предсказывает гомологию (сходство) последовательностей ДНК органелл и бактерий. Это предсказание с появлением методов секвенирования блестяще подтвердилось. Например, по нуклеотидным последовательностям 168-рибосомальной РНК хлоропласты наиболее близки к «ланобактериям, а митохондрии - к пурпурным бактериям. И те, и другие рРНК резко отличаются от рРНК эукариотических рибосом цитоплазмы хозяев. Наконец, теория симбиогенеза предсказывает возможность множественного (неоднократного) приобретения симбионтов и вероятность нахождения нескольких разных свободноживущих бактерий, похожих на их предков. Видимо, эта возможность была реализована в случае хлоропластов.

Здесь надо отметить, что в большинстве книг по цитологии ограни- чиваются описанием хлоропластов зеленых растений: их-то мы себе и представляем, когда речь идет про эти органоиды. Сходное строение имеют хлоропласты зеленых водорослей. А вот у других водорослей они могут существенно отличаться как по строению мембранных частей, так и по набору пигментов.

У красных водорослей хлоропласты содержат хлорофилл а и фнкобилины - белковые пигменты, собранные в особые тельца - фикобилисомы; мембранные мешочки - ламеллы - расположены в них поодиночке. По этим признакам они наиболее (из всех хлоропластов) схожи с цианобактериями, прямыми потомками которых, видимо, и являются. У зеленых водорослей и высших растений есть хлорофидлы а и Ь; нет фикобилинов; ламеллы собраны в стопки - граны. От типичных цианобактерий они по этим признакам отличаются. И вот в 70-е г.г. нашего века был подробно описан замечательный прокариот-фотоавтотроф - Prochloron. Он был известен и ранее - это симбионт асцидий-дидемнид, у которых он живет не внутри клеток, а в клоакальной полости. (Дидемниды - мешковидные, прозрачные колониальные существа, обитающие на коралловых рифах. Из-за симбионтов имеют ярко-зеленую окраску. Могут медленно двигаться, выбирая освещенные участки. Симбионты получают от хозяина защиту и необходимые mi ростовые вещества, а в ответ делятся с ним продуктами фотосинтеза и, видимо, аминокислотами - прохлорон способен к азотфиксации.) Оказалось, что прохлорон - скорее всего, цианобактерия (хотя некоторые ученые выделяют его в особый отдел Prochlorophyta вместе с позднее открытой свободноживущей нитчатой бактерией Prochlorothryx), но… у него нет фикобилинов; есть хлорофиллы а, Ь; есть стопки ламелл. Таким образом, это - »модель" предка хлоропластов высших растений!

«Модели» хлоропластов других водорослей (например, бурых и золотистых), возможно, еще будут открыты. Так и что и ^дедьтеория симбиогенеза нашла подтверждения.

Вопрос 9 Общие сведения о геохронологии Земли. Основные пути и этапы? волюции растений и животных. ОТВЕТ:

Эволюция органического мира Земли неразрывно связана с эволюцией литосферы. История развития литосферы Земли подразделяется на геологические эры: катархейскую, архейскую, протерозойскую, палеозойскую, мезозойскую, кайнозойскую. Каждая эра делится на периоды и эпохи. Геологическим эрам, периодам и эпохам соответствуют определенные этапы развития жизни на Земле.

Катархей, архей и протерозой объединяются в криптозой - «эпоху скрытой жизни». Ископаемые остатки криптозоя представлены отдельными фрагментами, не всегда поддающимися идентификации. Палеозой, мезозой и кайнозой объединяются в фанерозой - «эпоху явной жизни». Начало фанерозоя характеризуется появлением скелетообразующих животных, хорошо сохраняющихся в ископаемом состоянии: фораминифер, раковинных моллюсков, древних членистоногих.

Ранние этапы развития органического мира

Предшественники современных организмов (архебионты) характеризовались наличием основных компонентов клетки: плазмалеммы, цитоплазмы и генетического аппарата Существовали системы обмена веществ (электрон-транспортные цепи) и системы воспроизведения, передачи и реализации наследственной информации (репликация нуклеиновых кислот и биосинтез белка на основании генетического кода).

Дальнейшее развитие органического мира включает эволюцию отдельных групп организмов в составе экосистем. Экосистема должна включать не менее трех компонентов: продуцентов, консументов и редуцентов. Такт образом, на ранних этапах развития органического мира должны были сформироваться основные способы питания: фотоавтотрофный (голофитный), гетеротрофный голозойный и гетеротрофный сапротрофный. Фотоавтотрофный (голофитный) тип питания включает поглощение неорганических веществ поверхностью тела и последующий хемосинтез или фотосинтез. При гетеротрофном сапротрофном типе питания происходит поглощение растворенных органических веществ всей поверхностью тела, а при гетеротрофном голозойном типе питания - захват крупных пищевых частиц и их переваривание. В условиях избытка готовых органических веществ гетеротрофный (сапротрофный) способ питания является первичным. Большая часть архебионтов специатизироватась именно на гетеротрофном сапротрофном питании. У них формируются сложные ферментные системы. Это привело к увеличению объема генетической информации, появлению ядерной оболочки, разнообразных внутриклеточных мембран и органоидов движения. У части гетеротрофов происходит переход от сапротрофного питания к голозойному. В дальнейшем появляются белки-гистоны, что сделало возможным появление настоящих хромосом и совершенных способов деления клетки: митоза и мейоза. Таким образом, происходит переход от прокариотического типа организации клеток к эукариотическому.

Другая часть архебионтов специатизироватась на автотрофном питании. Древнейшим способом автотрофного питания является хемосинтез. На основе ферментно-транспортных систем хемосинтеза возникает фотосинтез - совокупность обменных процессов, основанных на поглощении световой энергии с помощью разнообразных фотосинтетических пигментов (бактериохлорофилла, хлорофиллов а. Ь, с, d и других). Избыток углеводов, образующихся при фиксации С02, позволил синтезировать разнообразные полисахариды.

Все перечисленные признаки у гетеротрофов и автотрофов являются крупными ароморфозами.

Вероятно, на ранних стадиях эволюции органического мира Земли был широко распространен обмен генами между

совершенно разными организмами (перенос генов путем трансдукции, межвидовой гибридизации и внутриклеточного

симбиоза). В ходе синтезогенеза свойства гетеротрофных и фотоавтотрофных организмов объединились в одной клетке.

Это привело к формированию различных отделов водорослей - первых настоящих растений.

Основные этапы эволюции растений

Водоросли - многочисленная неоднородная группа первично-водных фотоавтотрофных организмов. В ископаемом состоянии водоросли известны еще из докембрия (свыше 570 млн. лет назад), а в протерозое и начате мезозоя уже существовали все ныне известные отделы. Ни один из современных отделов водорослей не может считаться предком другого отдела, что указывает на сетчатый характер эволюции водорослей.

3 силуре происходило обмеление океана и опреснение воды. Это создало предпосылки для заселения литорали и супратиторати (литораль - часть берега, заливаемая во время приливов; литораль занимает промежуточное положение между водной и наземно-воздушной средой обитания; супратитораль - часть берега выше уровня приливов, увлажняемая брызгами; в сущности, супратитораль является частью наземно-воздушной среды обитания).

Содержание кислорода в атмосфере до появления наземных растений было значительно ниже современного: протерозой - 0,001 от современного уровня, кембрий-0,01, силур- 0,1. При дефиците кислорода лимитирующим фактором в атмосфере является ультрафиолет. Выход растений на сушу сопровождался развитием метаболизма фенольных соединений (дубильных веществ, флавоноидов, антоцианов), которые участвуют в осуществлении защитных реакций, в том числе от мутагенных факторов (ультрафиолет, ионизирующие излучения, некоторые химические вещества). Продвижение растений на сушу связано с появлением ряда ароморфозов:

Появление дифференцированных тканей: покровных, проводящих, механических, фотосинтезирующих. Появление дифференцированных тканей неразрывно связано с появлением меристем и основной паренхимы. _? Появление дифференцированных органов: побега (органа углеродного питания) и корня (органа минерального питания).

Появляются многоклеточные гаметангии: антеридии и архегонии.? Происходят существенные изменения в обмене веществ.

Предками Высших растений считаются организмы, сходные с современными Харовыми водорослями. Древнейшее известное наземное растений - куксония. Куксония обнаружена в 1937 г. (У. Ланг) в силурийских песчаниках Шотландии: (возраст порядка 415 млн. лет). Это растение представляло собой похожий на водоросль кустик веточек, несущих спорангии. Прикреплялось к субстрату с помощью ризоидов.

Дальнейшая эволюция Высших растений разделилась на две линии: гаметофитную и спорофитную

Представители гаметофитной линии - современные Моховидные. Это бессосудистые растения, у которых отсутствуют

специализированные проводящие и механические ткани.

Другая линия эволюции привела к появлению сосудистых растений, у которых в жизненном цикле доминирует спорофит, и имеются все ткани высших растений (образовательные, покровные, проводящие, основная паренхима и ее производные). Благодаря появлению всех типов тканей происходит дифференцировка тела растений на корень и побег. Древнейшими из сосудистых растений являются ныне вымершие Риниевые (псилофиты). В течение девона формируются современные группы споровых растений (Плауны, Хвощи, Папоротники). Однако у споровых растений отсутствует семя, и спорофит развивается из недифференцированного зародыша.

В начале мезозоя (? 220 млн. лет назад) появляются первые Голосеменные растения, которые господствовали в мезозойской эре. Крупнейшие ароморфозы Голосеменных:

Появление семязачатков; в семязачатке развивается женский гаметофит (эндосперм).

Появление пыльцевых зерен; у большинства видов пыльцевое зерно при прорастании образует пыльцевую трубку, образуя мужской гаметофит.

Появление семени, в состав которого входит дифференцированный зародыш.

Однако у Голосеменных растений сохраняется ряд примитивных признаков: семяпочки расположены на семенных чешуях (мегаспорангиофорах) открыто, опыление происходит только с помощью ветра (анемофилия), эндосперм гаплоидный (женский гаметофит), проводящие ткани примитивные (в состав ксилемы входят трахеиды). В кайнозое Голосеменные уступают господство Покрытосеменным.

Первые Покрытосеменные (Цветковые) растения появились, вероятно, еще в юрском периоде, а в меловом периоде начинается их адаптивная радиация. В настоящее время Покрытосеменные находятся в состоянии биологического прогресса, которому способствует ряд ароморфозов:? Появление пестика - замкнутого плодолистика с семязачатками.

Появление околоцветника, что сделало возможным переход к энтомофилии (опылению насекомыми).? Появление зародышевого мешка и двойного оплодотворения.

В настоящее время Покрытосеменные представлены множеством жизненных форм: деревья, кустарники, лианы, однолетние и многолетние травы, водные растения. Особого разнообразия достигает строение цветка, что способствует точности опыления и обеспечивает интенсивное видообразование - к Покрытосеменным относится около 250 тысяч видов растений.

Основные этапы эволюции животных

У Низших червей (Плоские и Круглые черви) появляется третий зародышевый листок - мезодерма. Это крупный ароморфоз, благодаря которому появляются дифференцированные ткани и системы органов. J3aTeM молюционное древо животных разветвляется на Первичноротых и Вторичноротых. Среди Первичноротых у Кольчатых червей образуется вторичная полость тела (целом). Это крупный ароморфоз, благодаря которому становится Jb возможным разделение тела на отделы.

Кольчатые черви имеют примитивные конечности (параподии) и гомономную (равнозначную) сегментацию тела. Но в \ начале кембрия появляются Членистоногие, у которых параподии преобразованы в членистые конечности. У V I

Членистоногих появляется гетерономная (неравнозначная) сегментация туловища. У них имеется хитиновый экзоскелет, \ I который способствует появлению дифференцированных пучков мышц. Перечисленные особенности Членистоногих являются ароморфозами.

Наиболее примитивные Членистоногие - Трилобитообразные - господствовали в палеозойских морях. Современные Жабродышащие первично-водные членистоногие представлены Ракообразными. Однако в начале девона (после выхода на сушу растений и формирования наземных экосистем) происходит выход на сушу Паукообразных и Насекомых. Паукообразные вышли на сушу, благодаря многочисленным алломорфозам (идиоадаптациям):? Непроницаемость покровов для воды.

Утрата личиночных стадий развития (за исключением клещей, однако нимфа клещей принципиально не отличается от взрослых животных).

Формирование компактного слабо расчлененного тела.

Формирование органов дыхания и выделения, соответствующих новым условиям обитания. Насекомые наиболее приспособлены к жизни на суше, благодаря появлению крупных ароморфозов:? Наличие зародышевых оболочек - серозной и амниотической.? Наличие крыльев.? Пластичность ротового аппарата.

С появлением Цветковых растений в меловом периоде начинается совместная эволюция Насекомых и Цветковых (коэволюция), и у них формируются совместные адаптации (коадаптации). В кайнозойской эре Насекомые, как и Цветковые растения, находятся в состоянии биологического прогресса.

Среди Вторичноротых животных наивысшего расцвета достигают Хордовые животные, у которых появляется ряд крупных ароморфозов: хорда, нервная трубка, брюшная аорта (а затем - сердце).

Происхождение хорды до сих пор точно не установлено. Известно, что тяжи вакуолизированных клеток имеются у низших беспозвоночных. Например, у ресничного червя Coelogynopora ветвь кишечника, располагающаяся над нервными I ганглиями в переднем конце тела, состоит из вакуолизированных клеток, так что внутри тела возникает эластичный стержень, помогающий вбуравливаться в песчаный грунт. У североамериканского ресничного червя Nematoplana nigrocapitula в добавление к описанной передней кишке вся спинная сторона кишечника преобразована в жгут, состоящий I из вакуолизированных клеток. Этот орган назвали кишечной хордой (chorda intestinalis). Возможно, что прямо из вакуолизированных клеток спинной стороны кишки и возникла спинная хорда (chorda dorsalis) энтомезодермального происхождения.

Or примитивных Хордовых животных в силуре происходят первые Позвоночные (Бесчелюстные). У позвоночных формируется осевой и висцеральный скелет, в частности, мозговая коробка и челюстной отдел черепа, что также является 1 ароморфозом. Низшие Челюстноротые позвоночные представлены разнообразными Рыбами. Современные классы рыб (Хрящевые и Костные) формируются в конце палеозоя - начале мезозоя).

Часть Костных рыб (Мясистолопасгные), благодаря двум ароморфозам - легочкэму дыханию и появлению настоящих конечностей - дала начало первым Четвероногим - Амфибиям (Земноводным). Первые Земноводные вышли на сушу в девонском периоде, но их расцвет приходится на каменноугольный период (многочисленные стегоцефалы). Современные Амфибии появляются в конце юрского периода.

Параллельно среди Четвероногих появляются организмы с зародышевыми оболочками - Амниоты. Наличие зародышевых оболочек - крупный ароморфоз, который впервые появляется у Рептилий. Благодаря зародышевым оболочкам, а также ряду других признаков (ороговевающий эпителий, тазовые почки, появление коры больших полушарий) Рептилии полностью утратили зависимость от воды. Появление первых примитивных рептилий - котилозавров - относится к концу каменноутольного периода. В перми появляются разнообразные группы рептилий: зверозубые, первоящеры и другие. В начале мезозоя формируются ветви черепах, плезиозавров, ихшозавров. Начинается расцвет рептилий. От групп, близких к первоящерам, отделяются две ветви эволюционного развития. Одна ветвь в начале мезозоя дала начало многочисленной группе псевдозухий. Псевдозухии дачи начато нескольким группам: крокодилы, птерозавры, I предки птиц и динозавры,^редстаюенные_двумя ветвями: ящеротазовые (бронтозавр, диплодок) и птицетазовые (только растительноядные виды - стегозавр, трицератопс). Вторая ветвь в начале мелового периода привела к появлению подкласса чешуйчатых (ящерицы, хамелеоны и змеи).

Однако Рептилии не смогли утратить зависимость от низких температур: теплокровность у них невозможна из-за неполного разделения кругов кровообращения. В конце мезозоя с изменением климата происходит массовое вымирание рептилий.

Лишь у части псевдозухий в юрском периоде появляется полная перегородка между желудочками, редуцируется левая дуга аорты, происходит полное разделение кругов кровообращения, и становится возможной теплокровность. В дальнейшем эти животные приобрели ряд адаптации к полету и дали начало классу Птицы.

В юрских отложениях мезозойской эры (? 150 млн. лет назад) обнаружены отпечатки Первоптиц: археоптерикса и археорниса (три скелета и одно перо). Вероятно, это были древесно-лазающие животные, которые могли планировать, но не были способны к активному полету. Еще раньше (в конце триаса,? 225 млн. лет назад) существовал протоавис (два скелета обнаружены в 1986 году в Техасе). Скелет протоависа существенно отличатся от скелета рептилий, большие полушария мозга и мозжечок были увеличены в размерах. В меловом периоде существовали две группы ископаемых птиц: ихтиорнисы и гесперорнисы. Современные группы птиц появляются только в начале кайнозойской эры. Существенным ароморфозом в эволюции птиц можно считать появление четырехкамерного сердца в сочетании с редукцией левой дуги аорты. Произошло полное разделение артериальной и венозной крови, что сделало возможным дальнейшее развитие головного мозга и резкое повышение уровня обмена веществ. Расцвет Птиц в кайнозойской эре связан с рядом крупных идиоадаптаций (появление перьевого покрова, специализация опорно-двигательного аппарата, развитие нервной системы, забота о потомстве и способность к перелетам), а также с рядом признаков частичной дегенерации (например, утрата зубов).

В начале мезозойской эры появляются первые Млекопитающие, которые возникли благодаря целому ряду ароморфозов: увеличенные полушария переднего мозга с развитой корой, четырехкамерное сердце, редукция правой дуги аорты, преобразование подвеска, квадратной и сочленовой костей в слуховые косточки, появление шерстного покрова, млечных желез, дифференцированных зубов в альвеолах, предротовой полости. Предками Млекопитающих были примитивные пермские Пресмыкающиеся, сохранявшие ряд признаков Амфибий (например, были хорошо развиты кожные железы). В юрском периоде мезозойской эры Млекопитающие были представлены, как минимум, пятью классами (Многобугорчатые, Трехбугорчатые, Трикодонты, Симметродонты, Пантотерии). Один из этих классов, вероятно, дал начало современным Первозверям, а другой - Сумчатым и Плацентарным. Плацентарные млекопитающие, благодаря появлению плаценты и настоящего живорождения, в кайнозойской эре переходят в состояние биологического прогресса. Исходным отрядом Плацентарных являются Насекомоядные. От Насекомоядных рано отделились Неполнозубые, Грызуны, Приматы и ныне вымершая группа Креодонтов - примитивных хищников. От Креодонтов отделились две ветви. Одна из этих ветвей дала начато современным Хищным, от которых отделились Ластоногие и Китообразные. Друтая ветвь дала начало примитивным копытным (Кондилартрам), а затем Непарнокопытным, Парнокопытным и родственным отрядам.

Окончательная дифференцировка современных групп Млекопитающих завершилась в эпоху великих оледенений - в плейстоцене. На современный видовой состав Млекопитающих значительное влияние оказывает антропогенный фактор. В историческое время были истреблены: тур, стеллерова корова, тарпан и другие виды.

В конце кайнозойской эры у части Приматов возникает особый тип ароморфоза - переразвитие коры больших полушарий головного мозга. В результате возникает совершенно новый вид организмов - Человек разумный.

10. основные методы изучения эволюционного процесса:

1) палеонтологические;

2) сравнительно-анатомические;

3) эмбриологические;

4) биогеографические;

5) данные генетики;

6) данные биохимии;

7) данные молекулярной биологии; Палеонтологические методы

1. Ископаемые переходные формы - формы организмов, сочетающие признаю! более древних и молодых групп. Переходными формами от рыб к наземным позвоночным являются кистеперые рыбы.

2. Палеонтологические ряды - ряды ископаемых форм, связанные друг с другом в процессе эволюции и отражающие ход филогенеза; филогенетический ряд должен состоять из промежуточных форм, близких по основным и частным деталям строения и генеалогически связанных друг с другом в процессе эволюции.

3. Последовательность ископаемых форм. При благоприятных условиях на одной и той же территории в ископаемом состоянии сохраняются все вымершие формы

групп. При анализе отложений можно определить последовательность возник­новения и изменения форм, реальную скорость протекания эволюционного процесса.

Сравнительно-анатомический метод

Этот метод основан на установлении сходств в строении современных организмов различных систематических групп. Органы, соответствующие друг друту по строению и происхождению независимо выполняемых функций, называют гомологичными (чешуйки на корневище, стеблевые чешуи хвоша, почечные чешуи). Эмбриологические методы

1. Выявление зародышевого сходства. В XIX веке Карл Бэр сформулировал «закон зародышевого сходства»: чем более ранние стадии индивидуального развития исследуются, тем больше сходства обнаруживается между различными организмами.

2. Принцип рекапитуляции. Изучение зародышевого сходства позволило

4. Дарвину и Э.Геккелю сделать вывод, что в процессе онтогенеза как бы повто­ряются (рекапитулируют) многие черты строения предковых форм: на ранних стадиях развития повторяются признаки более отдаленных предков, а на поздних- близких предков (или более родственных современных форм). Биогеографические методы

1. Сравнение флоры и фауны. Накопленные материалы о своеобразии, сходстве и различиях растительного и животного мира материков и отдельных областей

2. Реликты - отдельные виды или небольшие группы видов и комплексов признаков, характерные для давно вымерших групп прошлых эпох.

3. Прерывистое распространение. Существуют случаи, когда организмы не смогли приспособиться к темпам изменения среды и исчезали на большей части прежнего ареала, а сохранились лишь на участках, имеющих близкие к прежним условия.

Изучение островных форм. Своеобразие фауны и флоры островов зависит от продолжительности изолированности от основной сущи

Вопрос 11. Учение о микроэволюции и его осн.положения ОТВЕТ :

С целью разграничения механизмов адаптациогенеза и формирования высших таксонов Юрий Александрович Филнпченко (1927) ввел термины «микроэволюция» и «макроэволюция».

Микроэволюцией называется совокупность эволюционных процессов внутри видов. Сущность микроэволюционных преобразований составляет изменение генетической структуры популяций. В результате действия элементарных эволюционных факторов появляются новые аллели, а в результате действия отбора формируются новые адаптации. При этом происходит замещение одного аллеля другим аллелем, одного изотипа белка (фермента) другим изотипом. Популяции являются открытыми генетическими системами. Поэтому на микроэволюционном уровне происходит латеральный перенос генов - обмен генетической информацией между популяциями. Это означает, что адаптивный признак, возникший в одной популяции, может перейти в другую популяцию. Следовательно, микроэволюцию можно рассматривать как эволюцию открытых генетических систем, способных обмениваться генетическим материалом. Макроэволюция - это совокупность эволюционных преобразований, протекающих на уровне надвидовых таксонов. Надвидовые таксоны (роды, семейства, отряды, классы) - это закрытые генетические системы. [Для обозначения механизмов формирования высших таксонов (отделы, типы) Дж. Симпсон ввел термин «мегаэволюция».] Перенос генов от одной закрытой системы к другой невозможен или маловероятен. Таким образом, адаптивный признак, возникший в одном закрытом таксоне, не может перейти в другой закрытый таксон. Поэтому а ходе макроэволюции возникают значительные различия между группами организмов. Следовательно, макроэволюцию можно рассматривать как эволюцию закрытых генетических систем, которые не способны обмениваться генами в естественных условиях. Таким образом, учение о макроэволюции включает, с одной стороны, учение о родственных отношениях таксонов, а с другой стороны, учение об эволюционных (филогенетических) преобразованиях признаков этих таксонов. Сторонники СТЭ считают, что «поскольку эволюция - это изменение генетического состава популяций, механизмы эволюции представляют собой проблемы популяционной генетики» (Добжанский, 1937). Тогда крупные морфологические изменения, наблюдаемые на протяжении эволюционной истории, можно объяснить накоплением небольших генетических изменений. Таким образом, «микроэволюция дает макроэволюцию».

Связь между микроэволюцией и макроэволюцией отражена в законе гомологических рядов. Н.И. Вавилов создал учение о виде как системе. В этой теории вида внутривидовая изменчивость полностью отделена от таксономических различий (впервые такую попытку предпринял Дж. Рэй).

Однако противники СТЭ считают, что синтетическая теория эволюции объясняет выживание наиболее приспособленных, но не их появление. Например, Рихард Гольдшмидт («Материальные основы эволюции», 1940) считает, что накоплением и отбором мелких мутаций нельзя объяснить появление следующих признаков:? чередование поколений у самых разнообразных организмов;? появление раковины моллюсков;

Появление шерстного покрова млекопитающих и перьев у птиц;? появление сегментации у членистоногих и позвоночных;

Преобразования дуг аорты у позвоночных (вместе с мышцами, нервами и жаберными щелями);? появление зубов позвоночных;

Появление сложных глаз у членистоногих и позвоночных.

Появление этих признаков может быть обусловлено макромутациями в генах, отвечающих не за структуру ферментов, а за регуляцию развития. Тогда макроэволюция представляет собой самостоятельжх явление, не связанное с микроэволюцией. Такой подход устраивает противников дарвинизма, которые признают естественнонаучную основу микроэволюции, но отрицают естественнонаучную основу макроэволюции.

3, Общие закономерности эволюции

Макроэволюция представляет собой обобщенную картину эволюционных преобразований. Только на уровне макроэволюции обнаруживаются общие тенденции, направления и закономерности эволюции органического мира. В течение второй половины XIX - первой половины XX века на основании многочисленных исследований закономерностей эволюционного процесса были сформулированы основные правила (принципы) эволюции. (Эти правила носят ограниченный характер, не имеют универсального значения для всех групп организмов и не могут считаться законами.)

1. Правило необратимости эволюции, или принцип Долло (Луи Додло, бельгийский палеонтолог, 1893): исчезнувший признак не может вновь появиться в прежнем виде. Например, вторично-водные моллюски и водные млекопитающие не восстановили жаберного дыхания.

2. Правило происхождения от неспециализированных предков, или принцип Копа (Эдуард Коп, американский палеонтолог-зоолог, 1904): новая группа организмов возникает от неспециализированных предковых форм. Например, неспециализированные Насекомоядные (типа современных тенреков) дали начало всем современным плацентарным млекопитающим.

3. Правило прогрессирующей специализации, или принцип Депере (Ш. Депере, палеонтолог, 1876): группа, вступившая на путь специализации, в дальнейшем развитии будет идти по пути все более глубокой специализации. Современные специализированные млекопитающие (Рукокрылые, Ластоногие, Китообразные), скорее всего, будут эволюционировать поп пута дальнейшей специализации.

4. Правило адаптивной радиации, или принцип Ковалевского-Осборна (В.О. Ковалевский, Генри Осборн, американский палеонтолог): группа, у которой появляется безусловно прогрессивный признак или совокупность таких признаков, дает начало множеству новых групп, формирующих множество новых экологических ниш и даже выходящих в иные среды обитания. Например, примитивные плацентарные млекопитающие дачи начало всем современным эволюционно- экологическим группам млекопитающих.

5. Правило интеграции биологических систем, или принцип Шмачьгаузена (И.И. Шматьгаузен): новые, эволюционно молодые группы организмов вбирают в себя все эволюционные достижения прелковых групп. Например, млекопитающие использовали все эволюционные достижения предковых форм: опорно-двигательный аппарат, челюсти, парные конечности, основные отделы центральной нервной системы, зародышевые оболочки, совершенные органы выделения (тазовые почки), разнообразные производные эпидермиса и т.д.

6. Правило смены фаз, или принцип Северцова-Шмальгаузена (А.Н. Северцов, И.И. Шмальгаузен): различные механизмы эволюции закономерно сменяют друг друга. Например, алломорфозы рано или поздно становятся ароморфозами, а на основе ароморфозов возникают новые алломорфозы.

В дополнение к правилу смены фаз Дж. Симпсон ввел правило чередования темпов эволюции: по скорости эволюционных! преобразований он различал три типа эволюции: брадителлическую (медленные темпы), горотеллическую (средние темпы) и тахителлическую (быстрые темпы).

Вопрос 12. Популяционная структура вида. ОТВЕТ:

Популяционная структура вида

Вид представляет собой в действительности гораздо более сложную систему, чем просто совокупность скрещивающихся сходных друг с другом особей. Он распадается на более мелкие естественные группировки особей - популяции, представляющие население отдельных относительно небольших участков в пределах всей зоны распространения (ареала) данного вида. Внутри каждой популяции имеет место наибольшая степень панмиксии; скрешива-ние же особей, происходящих из разных популяций, имеет место относительно более редко, и обмен генетической информацией между разными популяциями более ограничен. Это обусловливает определенную самостоятельность генетических процессов, происходящих в разных популяциях одного вида. В результате каждая популяция характеризуется своим специфическим генофондом с присушим только данной популяции соотношением частот встречаемости разных аллелей и с соответствующими особенностями спектра изменчивости. Эти генетические различия популяций могут иметь как случайный, так и неслучайный характер. Последнее свойственно относительно крупным популяциям (порядка 500 о обей и более), длительное время существующим в данном географическом районе.

Природные условия в разных частях ареала вида обычно более или менее различны. В результате отбор имеет разное направление для популяций одного вида, населяющих разные районы. Следствием этого является возникновение относительно устойчивых различий генофондов разных популяций. Особенности популяци-онных генофондов благодаря действию отбора приобретают приспособительный характер: подбор аллелей в конкретном генофонде, обусловливающий специфическую картину комбинативной и модификационной изменчивости в данной популяции, становится оптимальным для условий обитания этой популяции.

Частота встречаемости разных аллелей в популяции определяется частотой прямых и обратных мутаций, давлением отбора, обменом наследственной информацией с другими популяциями в результате эмиграции и иммиграции особей. При относительной устойчивости условий в достаточно большой популяции все указанные процессы приходят к состоянию относительного равновесия, конкретный характер которого определяется, с одной стороны, спецификой условий, а с другой - генетической системой данного вида. В итоге такие достаточно крупные и устойчивые популяции приобретают сбалансированный и оптимизированный отбором генофонд, особенности которого имеют приспособительный характер и обусловливают специфические черты данной популяции (экологические, поведенческие, а во многих случаях и достаточно определенные морфофизиологические показатели).

Различия популяций, населяющих удаленные или относительно изолированные друг от друга области, становятся более отчетливыми в связи с уменьшением обмена генетической информацией между ними. Результатом достаточно продолжительной изоляции является формирование подвидов, под которыми понимаются популяции данного вида, населяющие разные участки видового ареала (т. е. имеющие аллопатрическое распространение) и характеризующиеся устойчивым комплексом морфологических, физиологических и экологических признаков, закрепленных наследственно. Однако подвиды полностью сохраняют скрепиваемость друг с другом, и если контакт между ними вновь расширяется, возникает зона интерградации, в которой в результате гибридизации особи имеют промежуточное состояние признаков. Наличие в пределах вида нескольких устойчиво различающихся друг от друга подвидо-вых форм обозначается термином политипичность вида.

Если ареалы отдельных подвидоз достаточно велики, подвиды распадаются на популяции меньшего масштаба - экологи различают несколько уровней таких территориальных (аллопатрических) группировок. Таким образам, внутри вида существует сложная иерархическая система территориальных популяций, которая является приспособлением к оптимальному использованию всего разнообразия условий в разных районах видового ареала.

Поскольку популяции обладают специфическим генофондом, находящимся под контролем естественного отбора, очевидно, что эти естественные группировки особей должны играть важнейшую роль в эволюционных преобразованиях вида. Все процессы, ведущие к каким бы то ни было изменениям вида - к его разделению на дочерние виды (видообразование) или к направленному изменению всего вида в целом (филетическая эволюция), начинаются на уровне видовых популяций. Эти процессы преобразований по-пуляционных генофондов принято называть микроэволюцией. По определению Н.В.Тимофеева-Ресовского, Н.Н.Воронцова и А. В.Яблокова, популяции представляют собой элементарные структурные единицы эволюционного процесса, а векторизованные (направленные) изменения генофондов популяций - элементарные эволюционные явления.

Следует отметить три гипотезы происхождения эукариотических клеток:

  • симбиотическая гипотеза , или симбиогенез ,
  • инвагинационная ,
  • химерная .

На сегодняшний день в научном мире основной гипотезой происхождения эукариот признается симбиогенез .

Согласно симбиогенезу такие органеллы эукариотических клеток как митохондрии , хлоропласты и жгутики произошли путем внедрения одних прокариот в другую, более крупную прокариотическую клетку, сыгравшую роль клетки-хозяина.

В симбиотической гипотезе есть трудности при объяснении происхождения ядра эукариотических клеток и в вопросе, какой же все-таки прокариот выступил хозяином. Данные молекулярного анализа генома и белков эукариот показывают, что, с одной стороны, это был организм близкий к археям (раньше относились к бактериям, потом их выделили в отдельную ветвь). С другой стороны, в эукариотах имеются белки (и ответственные за их синтез гены), характерные для совершенной других групп прокариот.

Согласно инвагинационной гипотезе происхождения эукариотических клеток их органоиды образовались путем впячивания цитоплазматической мембраны с последующим отделением этих структур. Образовывались что-то вроде шариков, окруженных мембраной и содержащих внутри цитоплазму и захваченные сюда соединения и структуры. В зависимости от того, что попало внутрь, сформировались разные органоиды.

У прокариот нет настоящих органелл, их функции как раз и выполняют впячивания мембраны. Поэтому легко представить подобное ее отшнуровывание. Также в пользу инвагинационной гипотезы говорит схожесть цитоплазматической мембраны и двойных мембран органелл.

С точки зрения инвагинагенеза происхождение ядра легко объяснимо, но необъяснимо, почему геном и рибосомы ядерно-цитоплазматического комплекса отличаются от таковых в хлоропластах и митохондриях (вспомним, что в них также есть ДНК и рибосомы). Причем в указанных органеллах система биосинтеза белка (ДНК, РНК, рибосомы) схожа с прокариотами.

Это отличие хорошо объяснимо как раз с точки зрения первой, симбиотической, гипотезы. Согласно ей в анаэробный прокариот так или иначе попал аэробный прокариот. Он не переварился, а стал, наоборот, питаться за счет клетки-хозяина. В свою очередь он использовал кислород для получения энергии, а этот способ окисления намного эффективнее, избыток энергии он отдавал хозяину-прокариоту, который в таком случае также получал выгоду. Возник симбиоз. В последствии внедрившийся прокариот упростился, часть его генома мигрировала в клетку-хозяина, он уже не мог существовать независимо.

Подобным образом симбиогенез объясняет происхождение хлоропластов. Только внедрялись уже прокариоты, способные к фотосинтезу (подобные синезеленым водорослям).

Первые эукариоты без фотосинтезирующих симбионтов дали начало животным, у которых они появились - растениям.

В настоящее время существуют простейшие (одноклеточные эукариотические организмы) у которых нет митохондрий или хлоропластов. Зато вместо них в цитоплазме поселяются прокариоты-симбионты, выполняющие соответствующие функции. Этот факт, а также схожесть системы биосинтеза белка митохондрий и пластид с прокариотами рассматриваются как доказательства симбиогенеза. Доказательством также служит то, что митохондрии и хлоропласты размножаются самостоятельно, они никогда не строятся клеткой с нуля.

В пользу третьей, химерной, гипотезы происхождения эукариотических клеток, говорит большой размер их генома, который превосходит бактериальный в тысячи и более раз, а также разнообразие синтезируемых белков, встречающихся в разных группах прокариот. Понятно, что на протяжении эволюции эукариот их геном усложнялся, он удвоился, в нем появилось множество регулирующих генов. Но все же первоначальное увеличение размера генома могло произойти за счет объединения геномов нескольких прокариот.

Возможно в древности некий прокариот приобрел способность к фагоцитозу и, питаясь таким образом, поглощал в том числе других прокариот, которые не всегда переваривались. Их геном содержал полезные для хозяина гены, и он включал их в свой геном. Возможно некоторые из оказавшихся внутри прокариот становились органеллами, что объединяет химерную гипотезу с симбиогенезом.

Поскольку все перечисленные гипотезы имеют сильные и слабые стороны, а также во многом не исключают положения друг друга, то, на наш взгляд, в происхождении структур эукариотических клеток могло сыграть роль сочетание множества факторов, описываемых разными гипотезами.

Следует также отметить, что согласно симбиотической гипотезе происхождение других мембранных органелл таких как вакуоли, комплекс Гольджи и др. можно рассматривать как дальнейшее упрощение, например, митохондрий.

Также отметим, что сочетание в эукариотах белков из разных прокариот вовсе может не указывать на химеризм первых. Возможно, что определенные ферментативные функции могут выполнять только белки конкретного строения. И эволюция эукариот повторно приходила к этому, независимо от эволюции не являющихся их предками групп прокариот. Скажем, происходила конвергенция на молекулярном уровне.

Симбиотическая гипотеза в последнее время находит большое коли-чество сторонников и часто называется уже не гипотезой, требующей дока-зательств, а теорией .

Следует отметить, что впервые идея о симбиотическом происхождении сложно устроенной клетки была высказана в России отечественным учёным-ботаником Андреем Сергеевичем Фаминцыным (1835-1918) в конце 60-х гг. XIX в. на основе изучения лишайников. В дальнейшем, в 1905-1909 гг., биолог Константин Сергеевич Мережковский (1855-1921) предложил тер-мин «симбиоз» и выдвинул концепцию о симбиотическом происхождении носителей пигментов в растительных клетках. Эта идея была развита в 1921-1924 гг. в симбиотическую концепцию происхождения клеток расте-ний и животных ботаником Борисом Михайловичем Козо-Полянским (1890-1957). На Западе эту концепцию развивали Лили Саган (1967), утверж-давшая, что эукариотическая клетка возникла путём симбиоза двух или более прокариотических клеток, Линна Маргулис (1983) и другие учёные.

Симбиотическая, или эндосимбиотическая, гипотеза исходит из того, что эукариоты представляют собой результат симбиоза между различными прокариотами . Допускается, что ядро развилось вследствие обособления ДНК из цитоплазмы путём впячивания плазматической мембраны и обвола-кивания ядерного вещества. Сходным образом могли возникнуть и эндоплазматическая сеть, и аппарат Гольджи .

Однако считается, что появление митохондрий и хлоропластов произо-шло иным путём. Полагают, что некоторые клетки, будучи гетеротрофами, за-хватывали других, более мелких бактерий , которых они по неизвестным при-чинам не переваривали. Захваченные мелкие клетки прокариот были способ-ны поглощать кислород. Это свойство было выгодным фактом для клетки-хозяина, поглотившей такую бактерию, так как давало 34 молекулы АТФ на одну молекулу глюкозы (против только двух молекул АТФ при брожении). По-глотителем могла быть и фототрофная клетка прокариот, питающаяся орга-ническими веществами, у которой в процессе реакций обмена веществ мог образовываться молекулярный кислород, ядовитый для неё, но потребляемый клеткой-симбионтом для своего дыхания. Из этих сохранившихся бактерий-симбионтов в ходе дальнейшей эволюции и могли произойти митохонд-рии. В пользу этой гипотезы свидетельствуют данные о современных симбио-тических отношениях между водорослями и инфузориями. На рис. 58 представлена схема возникновения в процессе эволюции сложной клетки эукари-от с помощью разных путей симбиоза. Материал с сайта

Одновременно с этими процессами или несколько позднее таким же путём мог произойти и эндоцитозный захват автотрофных прокариот, напри-мер сине-зелёных водорослей (цианобактерий), обладающих полным набо-ром пигментов фотосинтеза. Из этих симбионтов развились хлоропласты. Допускается также, что некоторые сложные по строению клетки, например простейших, произошли в результате симбиотических связей не только с про-кариотами, но и с другими эукариотами.

Симбиотическая гипотеза в настоящее время находит подтверждение рядом эволюционных реликтов в существующих и сейчас симбиотических связях между прокариотами и эукариотами. Такие связи наблюдаются сре-ди растительных и животных организмов. Например, свободноживущая амёба Pelomyxa palustris (пеломикса болотная) не имеет митохондрий, но содержит в себе симбиотические бактерии, которые обеспечивают ей ды-хание и АТФ.

На этой странице материал по темам:

Теория симбиогенеза (симбиотическая теория, эндосимбиотическая теория, или теория эндосимбиоза) объясняет механизм возникновения некоторых органоидов эукариотической клетки - митохондрий, пластид и гидрогеносом.

Суть концепция заключается в взаимовыгодном сожительстве органеллы с клеткой. Это позволяет предположить об эндосимбиозе, как о выгодном для обоих сторон симбиозе с образованием клеток эукариот (клетки, в которых присутствует ядро). Затем при помощи передачи генетической информации между бактериями осуществлялось их развитие и увеличение популяции. Согласно этой версии, все дальнейшие развитие жизни и жизненных форм обязано предшествующему предку современных видов.

Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер, показавший их саморепликацию внутри клетки.

Ее возникновению предшествовал вывод А. С. Фаминцына и О. В. Баранецкого о двойственной природе лишайников - симбиотического комплекса гриба и водоросли (1867 год).

Четкие положения системы были составлены русским ботаником и зоологом К. С. Мережковским.

В 1905 году он предложил само название «симбиогенез», впервые детально сформулировал теорию и создал на ее основе новую систему органического мира. Фаминцын в 1907 году, опираясь на работы Шимпера, также пришел к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.

В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис, начиная с 1960-х годов.

В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что митохондрии - это потомки аэробных бактерий (прокариот), родственных риккетсиям, поселившихся некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.

Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ. Вероятно, первоначально они получали от клетки-хозяина пируват, выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.

Пластиды, подобно митохондриям, имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках протистов и превратив их в автотрофные водоросли.

Доказательства

Митохондрии и пластиды:

Имеют две полностью замкнутые мембраны. При этом внешняя сходна с мембранами вакуолей, внутренняя - бактерий,

Размножаются бинарным делением (причем делятся иногда независимо от деления клетки), никогда не синтезируются de novo,

Генетический материал - кольцевая ДНК, не связанная с гистонами (По доле ГЦ ДНК митохондрий и пластид ближе к ДНК бактерий, чем к ядерной ДНК эукариот),

Имеют свой аппарат синтеза белка - рибосомы и другие рибосомы прокариотического типа - c константой седиментации 70S. По строению 16s рРНК близки к бактериальной.

Некоторые белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.

Проблемы

ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.

В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.

Не решен вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего прото-митохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.

Примеры эндосимбиозов

В наши дни существует ряд организмов, содержащих внутри своих клеток другие клетки в качестве эндосимбионтов. Они, однако, не являются сохранившимися до наших дней первичными эукариотами, у которых симбионты еще не интегрировались в единое целое и не потеряли своей индивидуальности. Тем не менее, они наглядно и убедительно показывают возможность симбиогенеза.

Mixotricha paradoxa - наиболее интересный с этой точки зрения организм. Для движения она использует более 250 000 бактерий Treponema spirochetes, прикрепленных к поверхности ее клетки. Митохондрии у этого организма вторично потеряны, однако внутри его клетки есть сферические аэробные бактерии, заменяющие эти органеллы.

Амебы рода Pelomyxa также не содержат митохондрий и образуют симбиоз с бактериями.

Инфузории рода Paramecium постоянно содержат внутри клеток водоросли, в частности, Paramecium bursaria образует эндосимбиоз с зелеными водорослями рода хлорелла (Chlorella).

Одноклеточная жгутиковая водоросль Cyanophora paradoxa содержит цианеллы - органоиды, напоминающие типичные хлоропласты красных водорослей, однако отличающиеся от них наличием тонкой клеточной стенки, содержащей пептидогликан. Размер генома цианелл такой же, как у типичных хлоропластов, и во много раз меньше, чем у цианобактерий.

Гипотезы эндосимбиотического происхождения других органелл

Эндосимбиоз - наиболее широко признанная версия происхождения митохондрий и пластид. Но попытки объяснить подобным образом происхождение других органелл и структур клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.

Пероксисомы

Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами.

Похожие публикации