Источник бесперебойного питания. Схема и описание устройства

Наиболее известны компьютерные источники бесперебойного питания (ИБП, или UPS). Обычного компьютерного бесперебойника хватает на несколько минут , необходимых для того, чтобы пользователь успел сохранить данные и завершить работу в штатном режиме. Вести речь о долговременном питании множества приборов потребления в данном случае бесполезно. Если необходимо обеспечить работу систем «умного дома», приборов отопления или другой бытовой техники, то понадобится более мощное устройство, рассчитанное на долговременную работу. Можно приобрести готовый прибор, но для людей подготовленных и разбирающихся в электротехнике привлекателен вариант самостоятельного изготовления бесперебойника. Это поможет в какой-то степени сэкономить деньги, даст возможность применить свои навыки и получить в результате устройство, максимально соответствующее потребностям конкретного потребителя.

Обеспечить бесперебойное питание приборов в течение достаточно длительного времени могут только устройства на основе мощных и емких аккумуляторов, для которых надо использовать зарядное устройство соответствующей мощности и инвертор, преобразующий постоянное напряжение в стандартные 220 В. Наибольшую сложность будет представлять именно изготовление инвертора, поскольку от того, какой он выдает синус - чистый или меандр разных типов - зависит, какие приборы смогут быть запитаны от полученного комплекта. Некоторые устройства не воспринимают импульсное напряжение с большим числом высокочастотных гармоник — это надо учитывать, планируя создание ИБП.

Большинство пользователей предпочитают использовать готовый инвертор заводской сборки, поскольку обеспечить необходимую частоту для дома и всех потребителей достаточно сложно.

Что потребуется?

Для изготовления ИБП своими руками в первую очередь потребуются аккумуляторы от мощного автомобиля - КамАЗа или иного подобного грузовика. Необходимо использовать пару аккумуляторов на 12 В, соединенных последовательно и обладающих емкостью от 190 А·ч. Устройства малой емкости заряжаются быстрее, но более требовательны к режиму зарядки и болезненно реагируют на перезаряд. Кроме того, понадобится зарядное устройство, обладающее достаточной мощностью, и инвертор.

Вся радиоэлектронная техника требует электропитания, и чаще всего мы используем сеть промышленного тока 220V, 50 Гц.
Но иногда могут возникнуть "форс-мажорные" ситуации когда электричество вдруг внезапно "вырубили". Если внезапное отключение электроэнергии для бытовой аппаратуры не сильно страшно, то для, к примеру, компьютеров это может привести к необратимым последствиям: недоустановленные программы, потеря информации и так далее.

Если в крупных городах с электропитанием все более-менее стабильно, но вот в сельской местности это довольно частое явление...
Чтобы избежать досадных недоразумений связанных с внезапным отключением электроэнергии многие производители рекомендуют пользоваться источниками бесперебойного питания (или как их просто называют бесперебойники ). Они, конечно-же выпускаются промышленностью, но такой источник можно собрать самостоятельно .

Кроме обеспечения защиты в случае отключения электроэнергии, источник бесперебойного питания может пригодится и в "полевых" условиях, когда возникнет необходимость получить 220 Вольт от аккумулятора 12 Вольт .

У нас на сайте уже была рассмотрена подобная схема, позволяющая получить 220 Вольт из 12-ти, вот она , здесь-же представлена очередная схема, взятая из журнала Радиолюбитель, №2, 1999 год.

Самодельный источник бесперебойного питания схема

Источник бесперебойного питания обеспечивает:

В прямом режиме преобразование постоянного напряжения 12 В в переменное 220 В/50 Гц при максимальном потребляемом токе не более 6 А. Выходная мощность -до 220 Вт (1 А):

Обратный режим (режим заряда аккумулятора). При этом ток заряда - до 6 А; .

Быстрое переключение из прямого в обратный режим.

Схема ИБП приведена на рисунке. На элементах VT3, VT4, R3...R6, С5, С6 выполнен тактовый генератор, вырабатывающий импульсы с частотой около 50 Гц. Он, в свою очередь, управляет работой транзисторов VT1, VT6, в коллекторные цепи которых включены обмотки IIa, IIб трансформатора Т1. Диоды VD2, VD3 - элементы защиты транзисторов VT1, VT6 в прямом режиме и выпрямители в обратном режиме. Элементы С1, С2, L1 образуют сетевой фильтр, VD1, СЗ, С4 - фильтр тактового генератора. Рассмотрим, как работает схема в обоих режимах.

Прямой режим (=12 В / -220 В). Напряжение +12 В попеременно прикладывается к обмоткам IIа или IIб, а трансформатор Т1 преобразует его в напряжение 220 В/50 Гц. Это напряжение присутствует на розетке XS1, и к ней подключаются всевозможные потребители (лампы накаливания, телевизор и др.)

Индикатором нормальной работы является свечение светодиодов VD4, VD5. Ток нагрузки может достигать 1 А (220 Вт).

Обратный режим (-220 В / =12 В). Для работы в обратном режиме необходимо сетевой шкур подключить к разъему ХР1 и подать на него -220 В. После этого переключается тумблер SB1. При этом сетевое напряжение попадает на первичную обмотку трансформатора Т1, а тактовый генератор отключается. Благодаря этому на вторичных обмотках Т1 получаются два переменных напряжения 10В, которые выпрямляются диодами VD2, VD3. Индикатором нормальной работы в обратном режиме является свечение светодиода VD5. Кипение в банках аккумулятора GB1 свидетельствует о процессе его зарядки.

Детали и конструкция, Т1 - любой трансформатор, обеспечивающий два напряжения 10В при Токе до 10 А. Лучше всего использовать сердечники типа ШЛ и ПЛ, которые легче разбираются. Катушка L1 выполнена на ферритовом кольце К28х16х9 М2000НМ и содержит две обмотки по 10 витков провода диаметром 0,5...0,71 мм.

Транзисторы VT1, VT6 и диоды VD2, VD3 крепятся через слюдяные прокладки, смазанные теплопроводящей пастой, на один общий радиатор площадью не менее 200 см2.

ИБП – это очень выгодный прибор. Пока он работает, у пользователя нет проблем с электроснабжением. Но на этом функциональность данного прибора не заканчивается. Простейшая доработка бесперебойника дает возможность создать на его базе такие устройства как преобразователь, блок питания и зарядка.



Как бесперебойник переделать в преобразователь напряжения 12/220 В

Преобразователь напряжения (инвертор) превращает постоянный 12-вольтовый ток в переменный, попутно повышая напряжение до 220 вольт. Средняя стоимость такого устройства – 60-70 долларов США. Однако даже у владельцев изношенных бесперебойников с функцией старта от батареи есть вполне реальный шанс получить работоспособный преобразователь фактически даром. Для этого нужно сделать следующее:

    Вскрыть корпус ИБП.

    Демонтировать аккумулятор, сняв с клемм накопителя два провода – красный (на плюс) и черный (на минус).

    Демонтировать спикер – устройство звуковой сигнализации, похожее на сантиметровую шайбу.

    Припаять к красному проводу предохранитель. Большинство конструкторов советуют использовать предохранители на 5 ампер.

    Соединить предохранитель с контактом «входа» ИБП – гнезда, куда вставлялся кабель, соединяющий бесперебойник с розеткой.

    Соединить черный провод со свободным контактом гнезда «входа».

    Взять штатный кабель для подключения ИБП к розетке, срезать вилку. Подключить разъем в гнездо входа и определить цвета проводов, соответствующие красному и черному контактам.

    Подсоединить провод от красного контакта к плюсу аккумулятора, а от черного – к минусу.

    Включить ИБП.

Внутреннее устройство ИБП Eaton 5P 1150i

Такую трансформацию допускают только бесперебойники с функцией старта от батареи. То есть ИБП должен изначально уметь включаться от , без подключения к розетке.

Если у ИБП есть штатная розетка – 220 вольт можно снимать с ее контактов. Если таковой розетки нет – ее заменит удлинитель, подключенный к гнезду «выхода» бесперебойника. Вилка удлинителя удаляется, после чего провода припаиваются к контактам гнезда «выхода».

Основные недостатки подобных преобразователей :

  • Рекомендуемое время работы такого инвертора – до 20 минут, поскольку ИБП не рассчитаны на длительную работу от аккумуляторов. Однако этот недостаток можно устранить, врезав в корпус ИБП компьютерный вентилятор, работающий от 12 В.
  • Отсутствие контроллера заряда аккумулятора. Пользователю придется периодически проверять напряжение на клеммах накопителя. Для устранения этого недостатка в конструкцию преобразователя можно врезать обычное автомобильное реле, припаяв красный провод за предохранителем к 87 контакту. При правильном подключении такое реле разомкнет подачу энергии при падении напряжения на аккумуляторе ниже 12 вольт.

Как из бесперебойника сделать блок питания

В этом случае из всей конструкции бесперебойника понадобится только . Поэтому решившемуся на подобную переделку ИБП пользователю придется либо распотрошить весь ИБП, оставив только корпус и трансформатор, либо снять эту деталь, заготовив для нее отдельный корпус. Далее действуют по следующему плану:

    С помощью омметра определяют обмотку с самым большим сопротивлением.Типовые цвета – черный и белый. Эти провода будут входом в блок питания. Если трансформатор остался в ИБП, то этот шаг можно пропустить – входом в самодельный блок питания в этом случае будет «входное» гнездо на торце ИБП, связующее прибор с розеткой.

    Далее на трансформатор подают переменный ток на 220 вольт. После этого с оставшихся контактов снимают напряжение, подыскивая пару с разностью потенциалов до 15 вольт. Типовые цвета – белый и желтый. Эти провода будут выходом из блока питания.

    Вход в блок питания формируют из проводов, по одну сторону от сердечника. Выход из блока формируют из проводов, расположенных с противоположной стороны.

    На выходе из блока питания ставят диодный мост.

    Потребители подключаются к контактам диодного моста.

Трансформатор

Типовое напряжение на выходе из трансформатора – до 15 В, однако оно просядет после подключения к самодельному блоку питания нагрузки. Вольтаж на выходе конструктору такого устройства придется подбирать путем экспериментов. Поэтому практика использования трансформатора ИБП как основы блока питания для компьютера – это далеко не самая лучшая идея.

Переделка бесперебойника под зарядку

В этом случае не нужна минимальная трансформация, похожая на описанную абзацем выше. Ведь у бесперебойника есть своя батарея, которая заряжается по мере надобности. В итоге для превращения ИБП в зарядное устройство нужно сделать следующее:

    Обнаружить первичный и вторичный контур трансформатора. Этот процесс описан абзацем выше.

    Подать на первичный контур 220 вольт, врезав в цепь регулятор напряжения – в качестве такового можно использовать реостат для лампочек, заменяющий традиционный выключатель.

    Регулятор поможет откалибровать напряжение на обмотке выходе в пределах от 0 до 14-15 вольт. Место врезки регулятора – перед первичной обмоткой.

    Подключить к вторичной обмотке трансформатора диодный мост на 40-50 ампер.

    Соединить клеммы диодного моста с соответствующими полюсами аккумулятора.

    Уровень заряда аккумулятора контролируется по его индикатору или вольтметром.

Написать письмо

По любому вопросу вы можете воспользоваться данной формой.

В далёком прошлом возникла необходимость бесперебойной работы мелкого сетевого оборудования: ADSL модема, и парочки роутеров.

К роутеру была подключена антенна, смотрящая на поселок. На тот момент нормальный интернет в нем казался не сбыточной мечтой. Поэтому был организован беспроводной «линк», передающий интернет на офис.

Данное оборудование находилось в месте где регулярно выключали электричество, в результате чего интернет пропадал, к тому же после появления электричества ADSL модем мог «зависнуть». В общем, неприятная ситуация.

Был приобретен UPS фирмы Powercom модель bnt-600ap. ADSL модем и пара роутеров в сумме потребляла не более 1.5А при напряжении питания 12в. В UPS стоит батарея 12в 7Ач, теоретически наша нагрузка должна была бы проработать хотя бы часа три. Но на практике время работы оказалось не более часа. Этот нас очень огорчило, ибо плановые работы электриков могли начаться в 9:00 а закончиться в 17:00. В итоги жизненно важный интернет пропадал на весь день. В чем же дело? В нашем UPS стоял увесистый трансформатор, гудящий во время работы от батареи.

Замеры показали-на холостом ходу схема «жрет» от батареи 10Ампер, а при нагрузке около 10-60Вт ток потребления падал до 8А. В общем, насколько я понял-любой UPS в «железным» трансформатором не рассчитан на длительную работу-выключить компьютер и пойти пить чай. Замеры и эксперименты я провел на трех-четырех UPS-ках разных моделей(одна –две батареи)-результат оказался одинаковым.

В качестве эксперимента был взят на прокат UPS без трансформатора работающего на частоте 50Гц. Кто не знает-в таких источниках стоит инвертор повышающий напряжение батареи до действующее значение напряжения, и 4 полевых транзистора(мосфета) рисующих «синус». КПД такого UPS-а значительно выше. Все бы хорошо-но после получаса работы, он сам отключался, хотя батарея не была полностью разряжена. Из документации было понятно-это нужно для того что бы не возникло «пожароопасной ситуации». Видимо производитель сэкономил на радиаторах, и решил через пол часа просто выключить нагрузку.

К сожалению и этот UPS не подошел для данной задачи.

Человек умеющий держать паяльник предложил купить-автомобильный аккумулятор, собрать зарядное и сделать UPS. В общем был «угроблен» один 24вольтовый(две батарее) UPS и все закончилось тем что за месяц «опытов» угробили и автомобильную батарею. Насколько я понимаю-батарею нужно было заряжать током 10-15Ампер,или более, чего не было сделано в начале эксплуатации, а заряд малыми токами 2-3А угробил ее. От 12В 55Ач батареи мы не добились хотя бы 10 часов работы при нагрузки в 1А. Где то 5 часов и все.

Все эти эксперименты обошлись в кругленькую сумму, с нулевым результатом.

Срочно нужен был UPS который сможет питать сетевое оборудование в течении хотя бы 8 часов, желательно 10.

Мною была собрана 12 вольтова версия блока бесперебойного питания. Нагрузка питалась от двух батарей, соединенных параллельно. Устройство полностью решило проблему «плановых работы электриков». Насколько я помню-батарей хватало на целый день работы.

Схема достаточна проста, и не содержит дефицитных деталей.

Устройство состоит из следующих узлов:

  1. Промышленного блока питания. Используется блок питания фирмы MeanWell RS-35-12 -12В 3А. Толи в магазине не было блоков питания 13.5В 3А, толи они стояли значительно дороже-короче купил этот с надеждой «можно докрутить до 15вольт». Надежда не особо оправдалась-штатным переменным резистором у меня не получилось достичь напряжения в 15вольт. Пришлось изменить номиналы некоторых резисторов. Стоит иметь ввиду-в блоке есть защита от перенапряжения-поэтому придётся повозиться. БП простой-мосфет, и NCP1203P60.Достаточно надежный 5лет точно отработал.
  2. Ограничителя зарядного тока на LD1085, устанавливающего ток заряда батареи на допустимом уровне. Для двух батарей было выставлено 1,47А.
  3. Узел отключения нагрузки. Самый ответственный, призванный не дать разрядить батареи ниже критического напряжения. Узел был переработан, с целью обеспечить минимально возможный ток потребления от батареи в режиме «нагрузка отключена».

На двух логических элементах микросхемы CD4011(аналог K561ЛА7) собран RS триггер. При включении устройства на выводе 10 устанавливается лог. 1, что приводит к открыванию транзисторов BC546 и IRF9540. Если в сети пропадает напряжение, нагрузка продолжает работать за счет аккумуляторных батарей. Для повышения КПД устройства-параллельно диоду сборки MBR2045 подключены нормально замкнутые контакты реле. Таким образом при пропадании питающего напряжения диод оказывается замкнут.

Если транзистор BC817 закроется, то на выводах 1,2 микросхемы CD4011 появиться лог 1, что приведет к закрытию IRF9540 и отключению нагрузки от батареи.

Микроконтроллер Attiny13A контролирует напряжение на батареи, в случае достижения критического порога –отключает нагрузку.

В предыдущей версии вместо микроконтроллера и BC817 использовалась микросхема NE555, которая формировала лог. 0 при разряде батареи. Особых нареканий по поводу ее работы не было, кроме сложной настройки порогового напряжения, и большого потребления в режиме «отключен». Поэтому решено было поставить микроконтроллер.

В связи с этим с печатной платы были удалены некоторый элементы.

Прошивка для микроконтроллера была написана на «скорую руку».

При появления напряжения в сети — начинают мигать зеленый и красный светодиоды. Приблизительно через 5 секунд схема переходит в режим измерения напряжения, и сразу светит зеленым светодиодом сигнализирую о «полностью заряженной батареи», если же в режиме автономной работы напряжение на батареи будет ниже 12 вольт-погаснет зеленый светодиод, и загорится красный, если напряжение опуститься ниже 10.8 –нагрузка будет отключена.

Как видно из схемы-при отключении нагрузки -отключается и плата микроконтроллера, это необходимо для минимального энергопотребления в режиме отключен. Неплохо бы отключить диод 1n4007 от истока транзистора IRF9540 и подключить его к точки питания платы микроконтроллера-тогда бы потребление было минимальным, сейчас 20мкА.

В прошлой версии потребление в выключенном состоянии составляло около 5-10mА. Фактически это потребление NE555.

Представьте –ваш ИБП отключили на месяц. До какого значения разрядиться батарея?

За месяц простоя напряжения на батареях упало до 7вольт.

Как оказалось гелевые батареи очень нежные-и после такого издевательства умирают полностью. После глубокого разряда мне ни какими действиями не удалось их оживить. Вроде бы каких то 5-10mA потребления-а за месяц батареи умерли полностью. Дабы такие ситуации не повторились-NE555 была удалена, вместо нее добавлена плата микроконтроллера.

Защиту от КЗ обеспечивает самовосстанавливающийся предохранитель на 4А включённый перед разъёмом нагрузки.

Подобных ИБП было собрано 3штуки. Один из них питал беспроводное оборудование на каком то многоэтажном доме. Два раза он умирал от грозы.

Первый раз в блоке питания что то случилось с конденсатором 0.1мкф, пробило IRF9540, и MBR2045. Дабы не повторялось такой ситуации был добавлен стабилитрон в цепь затвора, сапрессор P6KE20.

В следующий раз –в блоке питания взорвались(отлетел кусочек корпуса) оптопара PC123 и TL431. На плате ИБП сгорела CD4011-видимо зря был удален стабилитрон в цепи ее питания.

Похоже, нагрузка была не заземлена, и во время грозы на ней накапливался заряд-который через блок питания ушел в нулевой провод питающей сети.

В целом ИБП оказался достаточно надежным.

Смотря на его схему-я бы выкинул CD4011, и перенес бы логику работы в более мощный микроконтроллер (например atmega8), вместо LD1085 поставил бы ШИМ ограничитель тока.

ИБП помещен в корпус разломанного промышленного UPS на две батареи. При нагрузке в 1.5А транзистор и диод начинают греться, в целях надежности были установлены радиаторы из листового алюминия толщиной 3мм. Хотя и без них схема отработала год, пока гроза не убила мосфет.

Прошивка написана в среде AVR Studio на языке С,платы разработаны в Sprint-Layout.

Файлы проекта.

К устройству были следующие требования: малогабаритный, малозатратный, бесшумный в работе с высоким КПД который может обеспечивать автономную работу модема на протяжении трех или более часов.

Источники бесперебойного питания бывают двух видов: с мягким и жестким стартом. В нашем случае желательна система с жестким стартом.

В таком случае модем не выключается из-за отсутствия сетевого напряжения из-за моментального срабатывания бесперебойника.

Первое , что нам понадобится это аккумуляторы. Идеальным вариантом являются батарейки стандарта 18650 (4 шт. , емкость: чем больше- тем лучше).

Второе – это корпус. Подойдет корпус с платой от PowerBank. Имеет шесть отсеков для батареек 18650. Два отсека мы применим для размещения всей электроники.

Третье – DC-DC преобразователь, который обеспечивает 2 ампера (далее А) выходного тока

Четверное – Понижающий стабилизатор с возможностью стабилизации тока и напряжения. Он нужен для зарядки аккумулятора бесперебойника от адаптера питания модема (его ток порядка 3-х А).

Пятое – Элетромагнитное реле (обязательно с напряжением 12 вольт). Ток реле в принципе не важен.

Шестое – Два резистора любой мощности. Один с сопротивлением в 150 Ом, второй- на 1 кОм.

Седьмое -Транзистор прямой проводимости BD 140. Важно, чтобы он был прямой проводимости.

Восьмое – Любой малогабаритный выключатель с фиксацией. Ток не менее 1 А.

На выходе указанного стабилизатора нужно выставить напряжение около 4,1-4,2 В, что равноценно напряжению полностью заряженных литий- ионных аккумуляторов. А также нужно выставить максимальный ток заряда около 1,5- 2 А. Делается это с помощью подстроечных резисторов на плате понижающего стабилизатора.

Плату Dc-Dc повышающего преобразователя тоже нужно настроить. Для этого подключаем ее к одной банке литиевого аккумулятора и с помощью встроенного подстроечного резистора выставляем на выходе напряжение около 12 В. Именно этот преобразователь будет обеспечивать питание модема.

Теперь разберем, как работает вся эта система.

При наличии сетевого напряжения питание от адаптера модема (около 12 в) поступает на понижающий стабилизатор, который заряжают литиевые аккумуляторы. В этом случае открыт транзистор, и питание через его переход поступает на реле и последнее срабатывает, размыкая сеть питания Dc-dc преобразователя. Если же питание с адаптера отсутствует, например при отключении сетевого напряжения – транзистор закрывается и прекращается подача питания на обмотку реле. Контакты 1 и 2 замыкаются. Питание от аккумуляторов поступает на преобразователь, который повышает напряжение с литиевых аккумуляторов до уровня 12 в, обеспечивая бесперебойную работу модема. Выключатель предназначен для экстренного отключения источника бесперебойного питания.

Прошу обратить внимание на диод, который имеется в схеме.

Он подключен таким образом, чтобы не допускать протекание тока от выхода, повышающего преобразователя на вход понижающего стабилизатора.

Ремонт стиральной машины своими руками

Похожие публикации